Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.050
Filtrar
1.
PeerJ ; 12: e17175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560456

RESUMO

Background: Geographic isolation caused by high-altitude valleys promotes the formation of geographic segregation of species, leading to species differentiation. The subgenus Oreosaura contains viviparous species from the Tibetan Plateau and the vicinity of the Tarim Basin, which can be divided into three species complexes according to their geographical distribution: Phrynocephalus vlangalii, Phrynocephalus theobaldi, and Phrynocephalus forsythii. However, molecular data for the P. forsythii complex are limited and the diversity of this species complex has been greatly underestimated. Therefore, this study aimed to explore the species diversity of Oreosaura and species differentiation within the P. forsythii complex. Methods: We analysed the species diversity of Oreosaura by combining previous data, constructed a phylogenetic tree of the subgenus based on cytochrome c oxidase subunit I and 16S sequences, and estimated the divergence time. Results: The results suggest significant genetic differences between the Tarim Basin populations and adjacent mountain valley populations of the P. forsythii complex and that the combination of deep valley landscapes in the high mountains and ice-age events have contributed to the differentiation of the viviparous toad-headed agama lizard, which is a key factor in the phylogenetics of the P. forsythii complex. Furthermore, we identified a population collected from Wuqia County, Xinjiang, as a new species, Phrynocephalus kangsuensis sp. nov. The results will provide data for phylogenetic studies following the P. forsythii complex and help demonstrate that valleys promote the formation of Phrynocephalus species.


Assuntos
Meio Ambiente , Lagartos , Animais , Filogenia , Lagartos/genética
2.
Sci Data ; 11(1): 337, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580692

RESUMO

Reliable sex identification in Varanus salvator traditionally relied on invasive methods like genetic analysis or dissection, as less invasive techniques such as hemipenes inversion are unreliable. Given the ecological importance of this species and skewed sex ratios in disturbed habitats, a dataset that allows ecologists or zoologists to study the sex determination of the lizard is crucial. We present a new dataset containing morphometric measurements of V. salvator individuals from the skin trade, with sex confirmed by dissection post- measurement. The dataset consists of a mixture of primary and secondary data such as weight, skull size, tail length, condition etc. and can be used in modelling studies for ecological and conservation research to monitor the sex ratio of this species. Validity was demonstrated by training and testing six machine learning models. This dataset has the potential to streamline sex determination, offering a non-invasive alternative to complement existing methods in V. salvator research, mitigating the need for invasive procedures.


Assuntos
Lagartos , Análise para Determinação do Sexo , Animais , Lagartos/genética , Análise para Determinação do Sexo/veterinária , Aprendizado de Máquina
3.
Sci Adv ; 10(14): eadk9315, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569035

RESUMO

The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.


Assuntos
Lagartos , Seleção Genética , Animais , Fenótipo , Lagartos/genética
4.
Mol Ecol ; 33(9): e17338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38572696

RESUMO

The maintenance of polymorphisms often depends on multiple selective forces, but less is known on the role of stochastic or historical processes in maintaining variation. The common wall lizard (Podarcis muralis) is a colour polymorphic species in which local colour morph frequencies are thought to be modulated by natural and sexual selection. Here, we used genome-wide single-nucleotide polymorphism data to investigate the relationships between morph composition and population biogeography at a regional scale, by comparing morph composition with patterns of genetic variation of 54 populations sampled across the Pyrenees. We found that genetic divergence was explained by geographic distance but not by environmental features. Differences in morph composition were associated with genetic and environmental differentiation, as well as differences in sex ratio. Thus, variation in colour morph frequencies could have arisen via historical events and/or differences in the permeability to gene flow, possibly shaped by the complex topography and environment. In agreement with this hypothesis, colour morph diversity was positively correlated with genetic diversity and rates of gene flow and inversely correlated with the likelihood of the occurrence of bottlenecks. Concurrently, we did not find conclusive evidence for selection in the two colour loci. As an illustration of these effects, we observed that populations with higher proportions of the rarer yellow and yellow-orange morphs had higher genetic diversity. Our results suggest that processes involving a decay in overall genetic diversity, such as reduced gene flow and/or bottleneck events have an important role in shaping population-specific morph composition via non-selective processes.


Assuntos
Fluxo Gênico , Genética Populacional , Lagartos , Polimorfismo de Nucleotídeo Único , Lagartos/genética , Lagartos/anatomia & histologia , Lagartos/classificação , Animais , Pigmentação/genética , Seleção Genética , Variação Genética , Filogeografia , Masculino
5.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466135

RESUMO

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Assuntos
Lagartos , Pigmentação da Pele , Animais , Feminino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reprodução , Pigmentação/genética , Cor
6.
Mol Ecol ; 33(7): e17308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445567

RESUMO

Phrynosoma mcallii (flat-tailed horned lizards) is a species of conservation concern in the Colorado Desert of the United States and Mexico. We analysed ddRADseq data from 45 lizards to estimate population structure, infer phylogeny, identify migration barriers, map genetic diversity hotspots, and model demography. We identified the Colorado River as the main geographic feature contributing to population structure, with the populations west of this barrier further subdivided by the Salton Sea. Phylogenetic analysis confirms that northwestern populations are nested within southeastern populations. The best-fit demographic model indicates Pleistocene divergence across the Colorado River, with significant bidirectional gene flow, and a severe Holocene population bottleneck. These patterns suggest that management strategies should focus on maintaining genetic diversity on both sides of the Colorado River and the Salton Sea. We recommend additional lands in the United States and Mexico that should be considered for similar conservation goals as those in the Rangewide Management Strategy. We also recommend periodic rangewide genomic sampling to monitor ongoing attrition of diversity, hybridization, and changing structure due to habitat fragmentation, climate change, and other long-term impacts.


Assuntos
Lagartos , Metagenômica , Animais , Filogenia , Colorado , Ecossistema , Lagartos/genética , Variação Genética/genética , DNA Mitocondrial/genética , Filogeografia
8.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38319079

RESUMO

Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z chromosome scaffolds. These putative Z chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.


Assuntos
Animais Venenosos , 60714 , Lagartos , Animais , Masculino , Feminino , Lagartos/genética , Cromossomos Sexuais/genética , Cariótipo , Compensação de Dosagem (Genética)
9.
BMC Biol ; 22(1): 34, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331819

RESUMO

BACKGROUND: Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS: We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS: Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.


Assuntos
Evolução Biológica , Lagartos , Animais , Viviparidade não Mamífera/genética , Oviparidade/genética , Lagartos/genética , Genômica
10.
Sci Rep ; 14(1): 4898, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418601

RESUMO

Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.


Assuntos
Variações do Número de Cópias de DNA , Lagartos , Animais , Feminino , Masculino , Cromossomos Sexuais/genética , Sequência de Bases , Lagartos/genética , Mamíferos/genética , Evolução Molecular , Processos de Determinação Sexual/genética
11.
BMC Ecol Evol ; 24(1): 25, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378475

RESUMO

BACKGROUND: Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework. RESULTS: Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions. CONCLUSIONS: Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.


Assuntos
Lagartos , Animais , Humanos , Filogenia , Lagartos/genética , Sudeste Asiático , Filogeografia , Indonésia
12.
PLoS One ; 19(2): e0297637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354167

RESUMO

Fossil deposits with exceptional preservation ("lagerstätten") provide important details not typically preserved in the fossil record, such that they hold an outsized influence on our understanding of biodiversity and evolution. In particular, the potential bias imparted by this so-called "lagerstätten effect" remains a critical, but underexplored aspect of reconstructing evolutionary relationships. Here, we quantify the amount of phylogenetic information available in the global fossil records of 1,327 species of non-avian theropod dinosaurs, Mesozoic birds, and fossil squamates (e.g., lizards, snakes, mosasaurs), and then compare the influence of lagerstätten deposits on phylogenetic information content and taxon selection in phylogenetic analyses to other fossil-bearing deposits. We find that groups that preserve a high amount of phylogenetic information in their global fossil record (e.g., non-avian theropods) are less vulnerable to a "lagerstätten effect" that leads to disproportionate representation of fossil taxa from one geologic unit in an evolutionary tree. Additionally, for each taxonomic group, we find comparable amounts of phylogenetic information in lagerstätten deposits, even though corresponding morphological character datasets vary greatly. Finally, we unexpectedly find that ancient sand dune deposits of the Late Cretaceous Gobi Desert of Mongolia and China exert an anomalously large influence on the phylogenetic information available in the squamate fossil record, suggesting a "lagerstätten effect" can be present in units not traditionally considered lagerstätten. These results offer a phylogenetics-based lens through which to examine the effects of exceptional fossil preservation on biological patterns through time and space, and invites further quantification of evolutionary information in the rock record.


Assuntos
Dinossauros , Lagartos , Animais , Filogenia , Fósseis , Evolução Biológica , Lagartos/genética , Lagartos/anatomia & histologia , Dinossauros/genética , Dinossauros/anatomia & histologia , Aves
13.
Evolution ; 78(4): 716-733, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38262697

RESUMO

Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.


Assuntos
Fluxo Gênico , Lagartos , Humanos , Animais , Filogenia , Lagartos/genética , Filogeografia , América do Sul , DNA Mitocondrial/genética , Variação Genética
14.
Mol Ecol ; 33(5): e17276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243603

RESUMO

Host abundance might favour the maintenance of a high phylogenetic diversity of some parasites via rapid transmission rates. Blood parasites of insular lizards represent a good model to test this hypothesis because these parasites can be particularly prevalent in islands and host lizards highly abundant. We applied deep amplicon sequencing and analysed environmental predictors of blood parasite prevalence and phylogenetic diversity in the endemic lizard Gallotia galloti across 24 localities on Tenerife, an island in the Canary archipelago that has experienced increasing warming and drought in recent years. Parasite prevalence assessed by microscopy was over 94%, and a higher proportion of infected lizards was found in warmer and drier locations. A total of 33 different 18s rRNA parasite haplotypes were identified, and the phylogenetic analyses indicated that they belong to two genera of Adeleorina (Apicomplexa: Coccidia), with Karyolysus as the dominant genus. The most important predictor of between-locality variation in parasite phylogenetic diversity was the abundance of lizard hosts. We conclude that a combination of climatic and host demographic factors associated with an insular syndrome may be favouring a rapid transmission of blood parasites among lizards on Tenerife, which may favour the maintenance of a high phylogenetic diversity of parasites.


Assuntos
Apicomplexa , Lagartos , Parasitos , Animais , Filogenia , Lagartos/genética , Prevalência , Apicomplexa/genética
15.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243850

RESUMO

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Assuntos
Lagartos , Melaninas , Animais , Melaninas/genética , Lagartos/genética , Peixe-Zebra , Regulação da Temperatura Corporal/genética , Pigmentação da Pele/genética , Cor
16.
Heredity (Edinb) ; 132(2): 67-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968348

RESUMO

Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual's growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.


Assuntos
Lagartos , Oviparidade , Animais , Lagartos/genética , Temperatura , Temperatura Alta , Evolução Biológica
17.
Evolution ; 78(2): 355-363, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952174

RESUMO

Although sex determination is ubiquitous in vertebrates, mechanisms of sex determination vary from environmentally to genetically influenced. In vertebrates, genetic sex determination is typically accomplished with sex chromosomes. Groups like mammals maintain conserved sex chromosome systems, while sex chromosomes in most vertebrate clades are not conserved across similar evolutionary timescales. One group inferred to have an evolutionarily stable mode of sex determination is Anguimorpha, a clade of charismatic taxa including monitor lizards, Gila monsters, and crocodile lizards. The common ancestor of extant anguimorphs possessed a ZW system that has been retained across the clade. However, the sex chromosome system in the endangered, monotypic family of crocodile lizards (Shinisauridae) has remained elusive. Here, we analyze genomic data to demonstrate that Shinisaurus has replaced the ancestral anguimorph ZW system on LG7 with a novel ZW system on LG3. The linkage group, LG3, corresponds to chromosome 9 in chicken, and this is the first documented use of this syntenic block as a sex chromosome in amniotes. Additionally, this ~1 Mb region harbors approximately 10 genes, including a duplication of the sex-determining transcription factor, Foxl2, critical for the determination and maintenance of sexual differentiation in vertebrates, and thus a putative primary sex-determining gene for Shinisaurus.


Assuntos
Lagartos , Animais , Lagartos/genética , Cromossomos Sexuais , Serpentes/genética , Genoma , Genômica , Processos de Determinação Sexual , Mamíferos/genética
18.
J Hered ; 115(1): 57-71, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37982433

RESUMO

Understanding the processes that shape genetic diversity by either promoting or preventing population divergence can help identify geographic areas that either facilitate or limit gene flow. Furthermore, broadly distributed species allow us to understand how biogeographic and ecogeographic transitions affect gene flow. We investigated these processes using genomic data in the Northern Alligator Lizard (Elgaria coerulea), which is widely distributed in Western North America across diverse ecoregions (California Floristic Province and Pacific Northwest) and mountain ranges (Sierra Nevada, Coastal Ranges, and Cascades). We collected single-nucleotide polymorphism data from 120 samples of E. coerulea. Biogeographic analyses of squamate reptiles with similar distributions have identified several shared diversification patterns that provide testable predictions for E. coerulea, including deep genetic divisions in the Sierra Nevada, demographic stability of southern populations, and recent post-Pleistocene expansion into the Pacific Northwest. We use genomic data to test these predictions by estimating the structure, connectivity, and phylogenetic history of populations. At least 10 distinct populations are supported, with mixed-ancestry individuals situated at most population boundaries. A species tree analysis provides strong support for the early divergence of populations in the Sierra Nevada Mountains and recent diversification into the Pacific Northwest. Admixture and migration analyses detect gene flow among populations in the Lower Cascades and Northern California, and a spatial analysis of gene flow identified significant barriers to gene flow across both the Sierra Nevada and Coast Ranges. The distribution of genetic diversity in E. coerulea is uneven, patchy, and interconnected at population boundaries. The biogeographic patterns seen in E. coerulea are consistent with predictions from co-distributed species.


Assuntos
Jacarés e Crocodilos , Lagartos , Humanos , Animais , Filogenia , Jacarés e Crocodilos/genética , América do Norte , Lagartos/genética , Genômica , Filogeografia , Variação Genética , DNA Mitocondrial/genética
19.
BMC Ecol Evol ; 23(1): 69, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053023

RESUMO

BACKGROUND: Evidence of correlation between genome size, the nuclear haploid DNA content of a cell, environmental factors and life-history traits have been reported in many animal species. Genome size, however, spans over three orders of magnitude across taxa and such a correlation does not seem to follow a universal pattern. In squamate reptiles, the second most species-rich order of vertebrates, there are currently no studies investigating drivers of genome size variability. We run a series of phylogenetic generalized least-squares models on 227 species of squamates to test for possible relationships between genome size and ecological factors including latitudinal distribution, bioclimatic variables and microhabitat use. We also tested whether genome size variation can be associated with parity mode, a highly variable life history trait in this order of reptiles. RESULTS: The best-fitting model showed that the interaction between microhabitat use and parity mode mainly accounted for genome size variation. Larger genome sizes were found in live-bearing species that live in rock/sand ecosystems and in egg-laying arboreal taxa. On the other hand, smaller genomes were found in fossorial live-bearing species. CONCLUSIONS: Environmental factors and species parity mode appear to be among the main parameters explaining genome size variation in squamates. Our results suggest that genome size may favour adaptation of some species to certain environments or could otherwise result from the interaction between environmental factors and parity mode. Integration of genome size and genome sequencing data could help understand the role of differential genome content in the evolutionary process of genome size variation in squamates.


Assuntos
Lagartos , Animais , Filogenia , Tamanho do Genoma , Lagartos/genética , Serpentes/genética , Ecossistema , Viviparidade não Mamífera/genética , Oviparidade
20.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056449

RESUMO

Urosaurus nigricaudus is a phrynosomatid lizard endemic to the Baja California Peninsula in Mexico. This work presents a chromosome-level genome assembly and annotation from a male individual. We used PacBio long reads and HiRise scaffolding to generate a high-quality genomic assembly of 1.87 Gb distributed in 327 scaffolds, with an N50 of 279 Mb and an L50 of 3. Approximately 98.4% of the genome is contained in 14 scaffolds, with 6 large scaffolds (334-127 Mb) representing macrochromosomes and 8 small scaffolds (63-22 Mb) representing microchromosomes. Using standard gene modeling and transcriptomic data, we predicted 17,902 protein-coding genes on the genome. The repeat content is characterized by a large proportion of long interspersed nuclear elements that are relatively old. Synteny analysis revealed some microchromosomes with high repeat content are more prone to rearrangements but that both macro- and microchromosomes are well conserved across reptiles. We identified scaffold 14 as the X chromosome. This microchromosome presents perfect dosage compensation where the single X of males has the same expression levels as two X chromosomes in females. Finally, we estimated the effective population size for U. nigricaudus was extremely low, which may reflect a reduction in polymorphism related to it becoming a peninsular endemic.


Assuntos
Lagartos , Animais , Feminino , Masculino , Lagartos/genética , México , Cromossomos , Genoma , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...